La radiación solar y la estación SOLMET

La utilización en gran escala de la energía solar en los diferentes países está ligada a la solución de toda una serie de tareas tecnológicas y a la disponibilidad de la energía solar. Las instalaciones solares tanto térmicas como fotovoltaica requieren una modelación matemática detallada y para ello es necesario disponer de información sobre la energía solar en la superficie de la Tierra.

El disponer de registros de radiación solar fiables y contrastados permite la estimación de la radiación solar incidente sobre una superficie inclinada, con una determinada orientación, es esencial a la hora de determinar el dimensionado y el rendimiento de una instalación destinada al aprovechamiento de la energía solar.

Medir la radiación solar es importante para un amplio rango de aplicaciones, en la agricultura,  la ingeniería, la arquitectura, generación solar de electricidad, instalaciones y equipos solares, modelos de predicción del clima, investigación y desarrollo de tecnologías solares, etc.

El estudio del comportamiento y los ensayos de los dispositivos solares térmicos y fotovoltaicos  conllevan la necesidad de su caracterización en laboratorios, el tratamiento de la data experimental y el registro de las magnitudes actinométricas y meteorológicas en estaciones tipo SOLMET (Fig. 1).

B07F01_Estaciones meteorológicas

Fig. 1. Estaciones actinométricas y meteorológicas.

Se impone así la necesidad de realizar mediciones y registros de las magnitudes que caracterizan el régimen de radiación solar en estaciones con condiciones controladas. Una estación actinométrica permite disponer de datos de horas de Sol (Heliografos, Fig.2), radiación solar global,  difusa y directa (Piranómetros y Pirheliómetro, Fig. 3)  temperatura y humedad relativa del aire, presión atmosférica y velocidad y la dirección del viento.

B07F02_Heliografos anallógicos y digitales

Fig. 2. Heliógrafos analógicos y digital.

      B07F03_Piranometros_pirheliómetros

Fig. 3. Piranómetros y Pirheliómetros.

La Estación deberá estar integrada por instrumentos de alta tecnología, con certificados de calibración ISO, gran fiabilidad y alta precisión que de forma automatizada  registre y procese las magnitudes medidas.

Estación SOLMET, es una estación con un grado de fiabilidad suficiente para servir de referencia en un área geográfica dada con vistas al aprovechamiento e investigación de la energía solar.

Para alcanzar este objetivo, además de los equipos e instrumentos de la estación es necesario la formación de técnicos con alto nivel de profesionalidad que dominen los campos siguientes:

  • Cinemática solar;
  • Conceptos actinométricos;
  • Mantenimiento y calibración de los instrumentos y sensores;
  • Software de uso común en la actinometría especializada;
  • Dominio de las técnicas de control automático para garantizar la operación y autonomía de los equipos y registradores a lo largo del tiempo.

Referencias

  1. Alvarez-Guerra, M. et al. “Manual de radiación solar para la República de Cuba”. Editorial ACC. La Habana, Cuba, 1992. ISBN: 959-02-0014-1.
  1. Alvarez-Guerra, M. ; Massipe Hernández, J.R., et al. “La Estación  Actinométrica  del  CIES   elevada  a Estación SOLMET“. Energía, 2,1992. ISSN:1028-9925.
Share

Comportamiento térmico de colectores solares en Perú

El desarrollo y comercialización de materiales de aislamiento para cubiertas transparentes ha permitido pasar de la fase de investigación y prototipos a una serie de proyectos a gran escala de sistemas solares pasivos y activos. Para minimizar las pérdidas de calor por cubierta se pueden utilizar láminas de vidrio mejoradas, materiales aislantes transparentes y capilares de vidrio, los cuales se pueden obtener comercialmente.

I. SISTEMAS SIMULADOS

 Para estudiar el comportamiento térmico de los sistemas de colectores solares se ha simulado tres  sistemas solares [1] para el suministro de agua caliente sanitaria mediante el  programa TRNSYS.  En todos los casos los sistemas solares se complementan con una fuente auxiliar de energía. Se ha considerado las pérdidas de calor por tubería. La distribución diaria de la demanda de agua sanitaria ha sido la de un perfil de extracción tarde-noche como se muestra en la Fig. 1.Los parámetros comunes de los sistemas solares son los siguientes:

  • Localidades: zonas climáticas;
  • Inclinación: 20º;
  • Área de captación: 2,15 m2;
  • Volumen del tanque: 200 litros;
  • Consumo diario de agua: 180 litros;
  • Temperatura del agua fría: 10ºC;
  • Temperatura del agua caliente: 45ºC;
  • Régimen horario de carga: ver la 1
  • Fluido de trabajo: agua;
  • Longitud de la tubería: 10 m;
  • Eficiencia de la fuente auxiliar: 0.98;
  • Nodos de estratificación: 7.

B05F01_Distribución_horaria_de_agua_caliente

 

 

II. DATOS CLIMÁTICOS DE LAS LOCALIDADES

Según el Atlas de Energía Solar del Perú [2] las condiciones orográficas, climáticas y oceanográficas, entre otras, determinan la existencia de tres grandes regiones naturales: Costa, Sierra y Selva.

La zona de mayor potencial de energía solar del territorio peruano se encuentra principalmente en la costa sur donde la irradiación media diaria es de 6,0 a 6,5 kW h/m2, seguido de la costa norte y gran parte de la sierra sobre los 2500 msnm con una disponibilidad de energía solar diaria entre 5,5 a 6,0 kW h/m2. La zona de bajos valores de energía solar en el territorio es la selva con registros de 4,5 a 5,0 kW h/m2 con una zona de mínimos valores en el extremo norte.

B05F01a_Tabla de valores meteorológicos_en_Perú

Los datos se muestran en valores medios diarios mensuales los cuales se convierten  en valores  horarios mediante el generador de datos meteorológicos del programa TRNSYS. Las Fig. 2 y 3 muestran los  valores medios mensuales de la radiación solar global y las temperaturas medias mensuales para las zonas climáticas estudiadas.

B05F02_Radiación solar globar en zonas climáticas del Perú

Figura 2. Radiación solar global en zonas climáticas del Perú.

B05F02_Radiación solar globar en zonas climáticas del Perú

Figura 3. Temperaturas medias mensuales en zonas climáticas del Perú.

III. RESULTADOS

 Se ha utilizado para evaluar el comportamiento térmico de los sistemas solares la  fracción solar anual ¦solar y la energía útil anual producida Qútil. Los resultados se muestran en las figuras 4 y 5 respectivamente. La fracción solar es la fracción (por ciento) de la demanda térmica satisfecha (cubierta) con  energía solar, El primer parámetro da una medida del comportamiento térmico anual y el segundo parámetro cuantifica la energía térmica producida por los colectores solares.

B05F04_Fracción solar anual en zonas climáticas del Perú

Figura 4. Fracción solar anual de los sistemas solares en Perú.

B05F05_Energía útil producida en zonas climáticas del Perú

Figura 5. Energía útil anual producida de los sistemas en Perú.

IV. CONCLUSIONES

  1. Se ha mostrado que la utilización del colectores solares son adecuados para el suministro de agua caliente sanitaria en 5 localidades representativas de zonas climáticas de Perú;
  2. Los sistemas solares han alcanzado valores de la fracción solar anual superior al 65% en todas localidades estudiadas  lo que demuestra su viabilidad técnica para el suministro de agua caliente sanitaria;
  3. Si se considera que los colectores  solares planos son  sencillos, económicos y su mantenimiento es reducido pueden constituir una alternativa viable  y económica para el suministro de agua caliente sanitaria.

V. REFERENCIAS

  1. Massipe Hernández, J.R. (2015) “Colectores solares planos: características y parámetros”. Blog NaRural. http://usosenergiasolar.energia-rural.com/2015/05/05/colectores-solares-planos-caracteristicas-y-parametros/
  2. Proyecto PER/98/G31: Electrificación rural a base de energía solar fotovoltaica en el Perú. 2005. “Atlas de energía solar del Perú”. Lima, Perú.

 

Share

Colectores solares planos: características y parámetros

Como parte de un estudio del comportamiento térmico de colectores solares planos para el suministro de agua caliente sanitaria en diferentes condiciones actinométricas y climáticas del planeta, se muestran tres instalaciones de colectores solares de uso generalizado, sus singularidades y parámetros que caracterizan su comportamiento térmico.  

I.    Colectores solares planos en régimen forzado

La principal características de las instalaciones en régimen forzado es que incluyen al menos una bomba para hacer circular el fluido de trabajo por el colector solar. En la Fig. 1 se muestra el colector solar y el esquema del sistema solar en régimen forzado.

 El sistema solar con colectores solares en régimen forzado  está compuesto por dos circuitos hidráulicos: el primero incluye a los colectores solares planos por cuyo interior circulara la sustancia de trabajo (en localidades con temperatura bajo cero se utiliza una solución acuosa anticongelante), bomba de circulación, centralita de control  y el tanque acumulador y el segundo contiene  un calentador de agua  como fuente auxiliar de energía,  una válvula de tres vías termostática que mezcla proporcionalmente agua fría de la red y agua caliente proveniente del tanque  para controlar  la temperatura del agua a la entrada del calentador auxiliar.

B04F01_Colector solar plano en régimen forzado.

Figura 1.  Colector solar plano y esquema del régimen forzado.

II. Colector solar termosifónico

 La Fig. 2.  representa un colector solar termosifónico y el esquema de líneas de su instalación. Este tipo de sistema solar, generalmente, está compuesto por dos circuitos: uno el circuito solar entre el colector solar y el tanque acumulador puede llevar incorporado un  intercambiador de calor.  El segundo circuito es el de distribución del agua caliente sanitaria (ACS) a los puntos de consumo es similar al del sistema forzado.

En estos sistemas el agua de red va directamente al tanque acumulador que puede tener intercambiador de calor o no en cuyo caso se calienta  directamente el agua del tanque. No tiene bomba de circulación ya que la circulación del fluido se produciría por convección natural debido a la diferencia de densidades, de ahí su nombre. Si fuese necesario por temperaturas menores de cero grado se utiliza en el primer circuito una solución acuosa anticongelante.

B04F02_Colector solar termosifónico y esquema de líneas.

Figura 2.  Colector solar termosifónico y esquema de líneas.

III. Colector solar termoacumulativo

La Fig. 3.  muestra un colector solar termoacumulativo y el esquema de líneas de su instalación. Los colectores solares termoacumulativos, también conocidos como autocontenidos, integrales  o compactos, incorporan en un mismo equipo las funciones de absorción de la energía solar y la de acumulación de la energía térmica, resulta más sencillo al no llevar incorporado ni bomba de circulación ni tanque termo exterior, como muestra el esquema de la Fig. 3. No requiere bombas de circulación para su uso.

En este tipo de sistema solar está compuesto por un sólo circuito hidráulico. El agua de red va directamente al tanque termo-acumulador y de ahí al consumo. No tiene una bomba de circulación y si fuese necesario por las bajas temperaturas se utiliza opcionalmente una varilla de calefacción.  El colector solar termoacumulativo de cubierta mejorada  incorpora a la lámina de vidrio solar una lámina aislante transparente de  30 mm con el fin de minimizar las pérdidas de calor por la cubierta.

B04F3_Colector solar termoacumulativo.

Figura 3.  Colector solar termoacumulativo y su esquema de instalación.

IV. Parámetros que caracterizan el comportamiento térmico

 El comportamiento térmico de los colectores solares se caracteriza por su curva de eficiencia [2]:

B04F04_Eficiencia del colector solar plano

La Tab. 1 muestra los valores de los parámetros del comportamiento térmico de los tres colectores solares estudiados. Para los colectores solares termoacumulativos hay que tomar en cuenta los valores promedios de la  irradiación y la diferencia de temperatura entre el agua al inicio  de su exposición a la radiación solar y el ambiente. La ecuación [1] de la eficiencia térmica del colector termoacumulativo viene dada por:

B04F04_Eficiencia del colector solar termoacumulativo

B04F04_Factor transmitancia_absortancia

B04F04_Tabla1El término  puede expresarse en función de la incidencia normal, para cubierta de vidrio:

V. Referencias

  1. Massipe Hernández, J.R. (2005). “Colectores solares termoacumulativos: Análisis numérico y experimental en regímenes estacionario y transitorio”. Tesis Doctoral. Universidad de Lleida. España.
  2. Duffie, J.A. and Beckman, W.A., (2006). “Solar engineering of thermal processes”. Editorial Mc Graw-Hill, 3er Edition.
Share

Cerificadores solares para extraer cera de abejas

Equipos solares para extraer cera de abejas

Según comunicación del profesor Dr.Becquer Camayo, et al. [1]  de la Universidad Nacional del Centro de Perú de la ciudad de Huancayo, Junín [1], se realizo una investigación con el propósito de contar con un equipo solar optimizado llamado cerificador solar para extraer la cera de abejas de los panales.

Existen diferentes procedimientos para extraer y purificar la cera entre los cuales está los tradicionales y con equipos solares. Lesser [2]  plantea que: La cera puede fundirse en baño María o simplemente colocando los pedazos de panal en un recipiente con agua puestas sobre el fuego, cuando la cera está líquida comienza a flotar y se vierte sobre moldes previamente preparados.

 La forma más práctica, limpia y económica se realiza por medio del fundidor de cera solar, que es una caja con tapa de vidrio [1].

Funde la cera mediante el calor que acumula  estando en el sol. En la parte media y su interior tiene una bandeja en plano inclinado, de donde cae la cera, una vez fundida, en un molde. La cera extraída por el método solar siempre es de color claro, blanqueándose más a medida que está expuesta al sol.

Se experimentó con cuatro prototipos de cerificadores, los cuales se muestran en las figuras siguientes:

B03F1_Cerificadores solares de cera

Fig. 1. Cerificadores solares  de cera con un vidrio y con dos vidrios.

B03F2_Cerificador solar de cera

Fig. 2. Extractores  solares de cera con un vidrio y reflector y  con dos vidrios y reflector.

Para determinar el equipo óptimo según su rendimiento se  desarrolló ensayos experimentales considerando las magnitudes cantidad de cera extraída y el tiempo transcurrido por los prototipos  de cerificadores solares. La cera extraída o producida se caracterizó de acuerdo a las normas técnicas de control de calidad de ceras de abejas del laboratorio tecnológico del Uruguay (LATU).

RESULTADOS

El presente trabajo se llevó a cabo en las instalaciones de la ciudad universitaria de la Facultad de Ciencias Aplicas de la Universidad Nacional del Centro del Perú ubicado en Pomachaca del distrito de Tarma, Provincia de Tarma, situado a 3000 m.s.n.m. La realización de la fase experimental de los extractores de cera de abejas y los análisis  de la cera de abejas se realizó los meses de mayo y junio del año del 2014. Los resultados de la extracción con los cuatro tipos de extractores solares de cera se muestran en la Tabla.

B03F6_Tabla1 de cerificadores solares de cera

A fin de establecer la apariencia general de la cera de abeja obtenida de los diferentes tipos de cerificadores establecidos en la presente investigación se ha evaluado algunos parámetros como la solubilidad, olor, aspecto y sabor. En los cuatro prototipos se obtuvo una capa sólida y homogénea, un olor característico de la miel, un aspecto de sólido amorfo y un sabor característico.

   En trabajo [1] se concluye que:

  1. El equipo solar óptimo para la extracción cera de abejas es el cerificador que cuenta con una tapa de doble vidrio y espejo como reflector seguido por el cerificador con tapa de un vidrio y espejo como reflector.
  2. La cera de abejas extraída con los equipos solares tiene la calidad de acuerdo a las Normas de control de calidad de ceras de abejas del laboratorio tecnológico del Uruguay (LATU).
  3.  El equipo solar es una propuesta ambientalmente sostenible de aplicación de energías limpias para los apicultores por su bajo costo y facilidad de manejo constituyéndose una tecnología apropiada.

Referencias

  1. Ruíz Romero, Norma;  Vilcahuaman Portada, Berenice; Dr. Becquer Frauberth Camayo Lapa, Becquer y Massipe Hernández, Juan Raúl. “Optimización de un equipo solar para extraer y caracterizar cera de abejas”.  XXI Simposio Peruano de Energía Solar, 10-14 de Noviembre. Piura, Perú.

 2. Lesser, R. (1998). Manual de la apicultura moderna. (2da. Ed). Chile: Universitaria.

Share

Sistemas solares en los Andes peruanos II

Cámaras Calientes 

Según comunicación del profesor Dr.Ciro Espinoza de la Universidad Nacional del Centro de Perú  [1], “el Grupo de Energía Solar de la UNCP realizo una investigación con el objetico de determinar cuál es la configuración del sistema de calefacción que influye eficientemente en reducir el friaje en viviendas del alto-andinas [1].

El frío impacta con mayor fuerza en los pobladores del alto-andinos, y con mayor razón en poblaciones pobres. Sin embargo, durante los meses de intenso frío el cielo es despejado con una relativa alta radiación solar que podría almacenaje para utilizarse durante las noches que es el momento donde las temperaturas bajan en extremo”.

Beneficiados

La cantidad de viviendas beneficiadas en este proyecto con la instalación de Muro Trombe o Cámaras Calientes para la calefacción son 31 vivendas ubicadas en los ditritos de San José de Quero y Yanacancha de las provincias de Concepción y Chupaca de la regón de Junín en el Perú.

El muro Trombe 

¿Qué es un muro Trombe?

Es un captador-acumulador-emisor de la energía solar cuya función es calentar espacios, cámaras, habitaciones durante la noche. En la Figura 1 se muestra en esquemas detalles de un muro Trombe y de la cámara caliente

Muro Trombe y cámara caliente solar

Fig. 1. Muro Trombe con pared y lecho de piedras.

El muro Trombe está compuesto por una superficie transparente, de vidrio o de plástico, una cámara de aire y un acumulador másico de calor por calor sensible que puede ser una pared (muro) o un lecho de piedras, que permite durante el día solar  acumular la energía solar en forma de calor sensible para disipar este calor durante la noche.

Detalles constructivos de la cámara caliente

En las Figuras 2 y 3 se muestran detalles constructivos de las cámaras calientes del muro Trombe.

Lecho de piedras de muro TrombeFig. 2. Lecho de piedras de las cámaras calientes.

Cubierta transparente de muro Trombe

Fig. 3. Cubierta transparente del muro Trombe.

Condiciones ambientales y actinométricas

En [1] se selecciono 6 viviendas de las 31 para realizar un estudio de su comportamiento térmico. Estas viviendas se encuentran ubicadas entre los 3652 msnm y 3900 msnm. Las horas de sol que recibe la cámara caliente varía en función de su orientación geográfica, este número oscilo entre 6 y 8 horas al día.

Alturas solares en hemisferio surAl encontrarse las viviendas ubicadas en el hemisferio Sur de nuestro planeta, la menor altura solar de 54°se alcanza el 21 de junio y la mayor altura soalr de 101° el 21 de diciembre como se muestra en la Fig.4.

Fig. 4. Alturas solares en Hemisferio Sur [1].

Registro de temperaturas

Según [1], el registro de las mediciones de las temperaturas de la cámara, habitación se realizó entre las 11:00 h y las 13:00 h medios a intervalos de 15 minutos. Durante la medición los conductos de aire estaban abiertas.

Temperaturas en viviendas con muro TrombeEl promedio de las temperaturas se muestra en la Tabla 1. Estos resultados muestran que los muros Trombe con cámaras calientes mejoran las condiciones de vida de sus pobladores y por consiguiente su salud.

Ejemplos de viviendas muro Trombe y cámaras caliente

Muro Trombe_cámara caliente solar_Andés peruanos

Referencias

  1. Espinoza Montes, C.A. “Sistema de calefacción solar para reducir el friaje en viviendas alto andinas”. Facultad de Ingeniería Mecánica de la Universidad Nacional del Centro de Perú, 2014.
Share

Sistemas solares en los Andes del Perú

En una mañana de Septiembre de 2014, me paso a recoger a las 4.00 am, en el Hotel donde me hospedaba en la ciudad de Huancayo, Junín, Perú el profesor CarlosAñadir objeto  miembro del equipo de investigación que dirige el  Dr. Ciro Espinoza de la Universidad Nacional del Centro del Perú, con el objetivo de visitar 9 viviendas a 4000 msnm en los distritos de Yanacancha y San José de Quero de las provincias de Chupaca y Concepción de la Región de Junín del Perú,  en las cuales se instalaron colectores solares termosifónicos de tubos al vacio para el suministro de agua caliente sanitaria, un sistema fotovoltaico aislado para el alumbrado,  un muro tromble para reducir el friaje, cocinas ecológicas con evacuación de gases y un invernadero para el cultivo de hortalizas.

La experiencia fue única e inolvidable, ver como el uso de tecnologías solares y sostenibles contribuye al incremento de la calidad de vida, salud y bienestar  a familias  en los altos de los Andes y el agradecimiento de sus pobladores es una demostración de las potencialidades y del alcance estas tecnologías.

20140901_Perú_01a

 

Fig. 1. Colector solar termosifónico y módulo fotovoltaico.

20140901_Perú_03a

Fig. 2. Vista de los sistemas solares instalados en una vivienda.

20140901_Perú_4

Fig. 3. Invernadero para el cultivo de hortalizas.

20140901_Perú_5a

Fig. 4. Con el profesor Carlos y estudiantes colaboradores de la UNCP.

Share